Abstract

It is expected that in the near future the use of high-voltage dc (HVDC) transmission and medium-voltage dc (MVDC) distribution technology will expand. This development is driven by the growing share of electrical power generation by renewable energy sources that are located far from load centers and the increased use of distributed power generators in the distribution grid. Power converters that transfer the electric energy between voltage levels and control the power flow in dc grids will be key components in these systems. The recently presented modular multilevel dc converter (M2DC) and the three-phase dual-active bridge converter (DAB) are benchmarked for this task. Three scenarios are examined: a 15 MW converter for power conversion from an HVDC grid to an MVDC grid of a university campus, a gigawatt converter for feeding the energy from an MVDC collector grid of a wind farm into the HVDC grid, and a converter that acts as a power controller between two HVDC grids with the same nominal voltage level. The operation and degrees of freedom of the M2DC are investigated in detail aiming for an optimal design of this converter. The M2DC and the DAB converter are thoroughly compared for the given scenarios in terms of efficiency, amount of semiconductor devices, and expense on capacitive storage and magnetic components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.