Abstract

A comparison was made between the effects of chylomicrons and chylomicron remnants on metabolic processes of isolated hepatocytes. Since isolated triacylglycerol-rich lipoproteins are contaminated with nonesterified fatty acids, control incubations were conducted with an amount of fatty acid equivalent to the contaminating fatty acids present in the chylomicrons and the remnant preparations, respectively. Chylomicron remnants, produced in vitro by incubation of chylomicrons in postheparin rat plasma, caused marked inhibition of glycolysis, fatty acid synthesis, and cholesterol synthesis, along with marked stimulation of ketogenesis. These effects were traced to the release of nonesterified fatty acids from these remnant particles as a consequence of contamination with lipoprotein lipase, picked up by the particles during the incubation with rat plasma. Fatty acids inhibit glycolysis, cholesterol, and fatty acid synthesis, but enhance ketone body formation by isolated hepatocytes. Chylomicrons and remnants prepared in vivo by the injection of chylomicrons into functionally hepatectomized rats were not contaminated with lipoprotein lipase and did not inhibit glycolysis and cholesterol synthesis nor increase ketone body formation. These lipoprotein particles did, however, cause significant inhibition of fatty acid synthesis, with the chylomicrons being more effective on a protein basis than the remnants produced in vivo. The mechanism responsible for the inhibition of fatty acid synthesis by chylomicrons and remnants prepared in vivo remains to be resolved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call