Abstract

Using an exact Mie scattering solution, this paper investigates the mode conversions during the Mie scattering of a single bi- or one-component sphere in unbounded epoxy. Then the formation mechanism of the first complete gap in the corresponding tri- or bi-component phononic crystal is investigated by the multiple-scattering method. It is shown that the heavy density of the scatterer plays an essential role in the Mie resonance and the formation of the gaps for both types of the phononic crystals. For the tri-component phononic crystal, the gap is mainly induced by the Mie resonance of the single scatterer. For the bi-component phononic crystal, the transverse wave (by mode-conversion during the Mie scattering under a longitudinal wave incidence) is modulated by the periodicity and governed by the Bloch theory, which induces the gap cooperatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.