Abstract

The industry-standard surface-related multiple elimination (SRME) method provides an approximate predictor of the amplitude and phase of free-surface multiples. This approximate predictor then calls upon an energy-minimization adaptive subtraction step to bridge the difference between the SRME prediction and the actual free-surface multiple. For free-surface multiples that are proximal to other events, the criteria behind energy-minimization adaptive subtraction can be invalid. When applied under these circumstances, a proximal primary can often be damaged. To reduce the dependence on the adaptive process, a more accurate free-surface multiple prediction is required. The inverse scattering series (ISS) free-surface multiple elimination (FSME) method predicts free-surface multiples with accurate time and accurate amplitude of free-surface multiples for a multidimensional earth, directly and without any subsurface information. To quantify these differences, a comparison with analytic data was carried out, confirming that when a free-surface multiple interferes with a primary, applying SRME with adaptive subtraction can and will damage the primary, whereas ISS free-surface elimination will precisely remove the free-surface multiple without damaging the interfering primary. On the other hand, if the free-surface multiple is isolated, then SRME with adaptive subtraction can be a cost-effective toolbox choice. SRME and ISS FSME each have an important and distinct role to play in the seismic toolbox, and each method is the indicated choice under different circumstances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call