Abstract

Strains of Escherichia, Salmonella, Shigella and Yersinia actively enter eukaryotic cells. Several techniques were used to compare and contrast the invasion mechanisms of Salmonella choleraesuis, Yersinia enterocolitica and Shigella flexneri. Three animal cell lines (CHO, HEP-2 and MDCK) were examined for susceptibility to bacterial entry by these strains. Levels of intracellular bacteria varied widely between cell lines, but CHO cells were the most susceptible to bacterial invasion, HEp-2 invasion levels were intermediary, whereas polarized MDCK cells were invaded to a lesser evtent. This illustrates that tissue culture models can be optimized to study bacterial invasion and intracellular replication. We used these tissue culture models to examine the interactions between host cells and these invasive bacteria. The use of lysosomotropic agents (methylamine and ammonium chloride), cationic ionophores (monensin) and acidification-defective CHO cell lines demonstrated that endosome acidification is not required for bacterial invasion or intracellular replication. Drugs which inhibited microfilament formation (cytochalasins B and D) prevented internalization of S. cholerae-suis, Y. enterocolitica and S. flexneri, indicating that invasion is a microfilament-dependent event. The microtubule inhibitors, colchicine, vincristine and vinblastine, did not affect bacterial internalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.