Abstract

This study aimed to investigate the differences and inhibitory effects of diethyl citrate (Et2Cit), sodium citrate (Na3Cit), and phosphonoformic acid (PFA) on calcification induced by high inorganic phosphate (Pi) contents in mouse aortic smooth muscle cells (MOVAS) and to develop drugs that can induce anticoagulation and inhibit vascular calcification (VC). Alive and fixed MOVAS were assessed for 14 days in the presence of high Pi with increasing Et2Cit, Na3Cit, and PFA concentrations. Calcification on MOVAS was measured through Alizarin red staining and the deposited calcium amount; apoptosis was detected by annexin V staining; and cell transdifferentiation was examined by measuring smooth muscle lineage gene (α-SMA) expression and alkaline phosphatase activity. Coincubation of MOVAS with Et2Cit, Na3Cit, and PFA significantly decreased Pi-induced VC in live MOVAS, and the apoptotic rate was reduced by low inhibitor concentrations. The 3 inhibitors could prevent the alkaline phosphatase activity induced by high Pi contents and increased the expression of α-smooth muscle actin genes. Thus, the transdifferentiation of MOVAS into osteoblast-like cells was blocked. Their inhibitory effects exhibited concentration dependence. The inhibitory effect of each inhibitor at the same concentration showed the following trend: PFA > Na3Cit > Et2Cit. Et2Cit, Na3Cit, and PFA prevented the calcification of MOVAS and inhibited the osteochondrocytic conversion of vascular smooth muscle cells. Thus, Et2Cit and Na3Cit as anticoagulants may alleviate VC in clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.