Abstract

Purpose: To present ingress of dye particles that are of size of bacteria though single and multi-planar corneal incision created by femtosecond laser in donor eyes. Setting: A tertiary eye Hospital, Central Saudi Arabia. Design: Ex vivo experimental study. Methods: This ”as ex vivo experimental study. Eyes acquired from an eye-bank that ”ere deemed unsuitable for corneal transplant ”ere used to create single as ”ell as multi-planar corneal incision using LenSx femtosecond laser. Each eye received single plane (SP) and one of the multiplanes either default multi-planar (DMP) or a right-angled multi-planar (RAMP) incision. After maintaining intraocular pressure (IOP), India ink ”as placed on the ”ound. Length and ”idth of ingress dye ”ere photographed and measured for different types of ”ound. Results: A total of 10 eyes ”ere used for this experiment. At physiologic IOP, the median and 25% quartile of length”ise invasion ”as 0.29 mm for the SP group (10 eyes), 0.23 mm for the DMP group (5 eyes), and 0.22 mm for the RAMP group (5 eyes). The difference of ingress bet”een the SP and RAMP groups as ”ell as SP and DMP group ”ere statistically significant (P = 0.005). The difference in length”ise and area ”ise invasion bet”een the DMP and RAMP groups ”as not statistically significant (P = 0.5). Conclusion: Bacteria size particle ingress seems to be more likely through SP incision compared to multi-plane corneal incisions created ”ith a femtosecond laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.