Abstract

The effect of varying the boron and aluminium content of the starting electrolyte for extrinsically doped ZnO films grown on SnO2:F substrates by electrochemical deposition was investigated. The ZnO:B film surface was characterized by grains with mainly hexagonal faces exposed while the exposed faces of the ZnO:Al grains were rectangular. Whereas a B3+/Zn2+ ratio of up to 10at.% in the electrolyte had no significant effect on the crystalline structure of the ZnO films, an Al3+/Zn2+ ratio above 0.25at.% increased the disorder in the crystalline structure. All the boron doped films exhibit a strong E2-high Raman mode related to wurtzite ZnO structure but this peak was much weaker for ZnO:Al and diminished with increasing Al incorporation in the films. Exposing the films to ultra-violet light reduced their effective sheet resistance from values beyond measurement range to values between 40 and 5000kΩ/sq for film thicknesses of 200–550nm. Inspection of the optical spectra near the bandgap edge and the plasma edge in the mid infrared range, showed that the Al-doping resulted in a higher carrier concentration ~1020cm−3 than B-doping. X-ray electron spectroscopy showed that the dopant efficiency was limited by the absence of dopant atoms near the surface of all the ZnO:B films and of the lightly doped ZnO:Al and, by the formation of aluminium oxide at the surface of the more highly doped ZnO:Al films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.