Abstract
Polyhydroxyalkanoates (PHAs), due to their biodegradable and biocompatible nature and their ability to be formed in complex structures, are excellent candidates for fabricating scaffolds used in tissue engineering. By introducing inorganic compounds, such as bioactive glasses (BGs), the bioactive properties of PHAs can be further improved. In addition to their outstanding bioactivity, BGs can be additionally doped with biological ions, which in turn extend the functionality of the BG-PHA composite. Here, different PHAs were combined with 45S5 BG, which was additionally doped with copper in order to introduce antibacterial and angiogenic properties. The resulting composite was used to produce scaffolds by the salt leaching technique. By performing indirect cell biology tests using stromal cells, a dose-depending effect of the dissolution products released from the BG-PHA scaffolds could be found. In low concentrations, no toxic effect was found. Moreover, in higher concentrations, a minor reduction of cell viability combined with a major increase in VEGF release was measured. This result indicates that the fabricated composite scaffolds are suitable candidates for applications in soft and hard tissue engineering. However, more in-depth studies are necessary to fully understand the release kinetics and the resulting long-term effects of the BG-PHA composites.
Highlights
Due to disease, injury and trauma, treatments to promote the repair, replacement or regeneration of damaged and degenerated tissues in the human body are necessary
In the most common tissue engineering (TE) approach, cells grow on a scaffold made using suitable methods to provide a temporary support and a well-defined pore structure [6]
Good pore interconnectivity was indicated by the Scanning Electron Microscopy (SEM) images, which needs to be proven in
Summary
Injury and trauma, treatments to promote the repair, replacement or regeneration of damaged and degenerated tissues in the human body are necessary. These treatments typically involve living tissue and organs for transplantation and have been lifesaving [1,2,3,4]. Due to donor limitations and organ rejection, tissue engineering (TE) as a suitable alternative is being increasingly investigated [5]. In the most common TE approach, cells grow on a scaffold made using suitable methods to provide a temporary support and a well-defined pore structure [6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.