Abstract

ABSTRACTThe purpose of this study was to evaluate the inertial properties and forces required to initiate movement on two different surfaces in a sample of three commonly prescribed gait trainers. Tests were conducted in a laboratory setting to compare the Prime Engineering KidWalk, Rifton Pacer, and Snug Seat Mustang with and without a weighted anthropometric test dummy configured to the weight and proportions of a 4-year-old child. The Pacer was the lightest and the KidWalk the heaviest while footprints of the three gait trainers were similar. Weight was borne fairly evenly on the four casters of the Pacer and Mustang while 85% of the weight was borne on the large wheels of the mid-wheel drive KidWalk. These differences in frame style, wheel, and caster style and overall mass impact inertial properties and forces required to initiate movement. Test results suggest that initiation forces on tile were equivalent for the Pacer and KidWalk while the Mustang had the highest initiation force. Initiation forces on carpet were lowest for the KidWalk and highest for the Mustang. This initial study of inertia and movement initiation forces may provide added information for clinicians to consider when selecting a gait trainer for their clients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.