Abstract

We evaluated whether a c-fos-enhanced green fluorescent protein (eGFP) transgenic rat line, which expresses the c-fos and eGFP fusion gene, can be useful for the study of nociceptive pathways and processing. Capsaicin solution (15%) or formalin (5%) was subcutaneously injected bilaterally into the hind paws (100μL per each paw) of adult male c-fos-eGFP transgenic or wild-type rats. Control rats were injected with ethanol or physiological saline respectively. Transgenic and wild-type rats were perfused at 1.5, 3 and 6h post injection, with some transgenic rats being perfused 24h post injection. A comparison of eGFP in transgenic rats and Fos-like immunoreactivity (LI) in wild-type rats was made in the dorsal spinal cord, paraventricular nucleus (PVN) and supraoptic nucleus (SON). Oxytocin-LI (OXT-LI) was carried out to examine the activation of OXT neurons in the PVN and SON. Following capsaicin or formalin treatment, eGFP was maximally expressed at 6h in the spinal cord and 3h in the PVN and SON, whereas, Fos-LI was maximally expressed at 1.5h in all the regions we analyzed. Induction of eGFP in the OXT neurons was observed after capsaicin or formalin treatment, while Fos-LI in the OXT neurons was observed only after formalin treatment. These results demonstrate that the peak induction of c-fos-eGFP following exposure to acute nociceptive stimuli was delayed by around 1.5–4.5h, but more sensitive than endogenous Fos, suggesting that the c-fos-eGFP rat line can be useful for the study of nociceptive pathways and processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call