Abstract

The impacts of globalization, changing socio-demographics, and technological advances are uniquely altering the role of engineering in society, identifying significant challenges in the way colleges and universities address the engineering profession, engineering education, and associated engineering student assessment processes and practices. Schools of engineering have been challenged to reconsider how they prepare their graduates to bring high level skills and strategies including team focused innovation, a comprehensive engineering problem-solving approach, cultural competence, globally focused ethics, and leadership to the workplace. Numerous prominent organizations including the National Academy of Engineering, the National Science Foundation, and the National Research Council have charged engineering schools to task on preparing engineers for global workforces. In response, many engineering programs are experimenting with strategies and programs designed to prepare students to solve important engineering problems that stretch far beyond national boundaries geographically, technologically, culturally and socio-politically. Sparse research exists, however, that comprehensively assesses globally focused outcomes associated with such engineering efforts, and the simple question remains: Are international efforts effective? The researchers compare the experiences of students participating in two Research Experiences for Undergraduates (REU) programs funded by the National Science Foundation; the NanoJapan International REU Program in Japan and the domestic Rice Quantum Institute (RQT) REU at Rice University. NanoJapan is a twelve-week summer program through which twelve freshman and sophomore physics and engineering students from U.S. universities complete research internships in Japanese nanotechnology laboratories. The RQI is a ten-week undergraduate REU in which sophomore and junior students from U.S. universities complete research in atomic, molecular, optical, surface, materials, chemical and biophysical sciences with faculty at Rice University. The students completed the Engineering Global Preparedness Index (EGPI), a multi-dimensional engineering global preparedness index that measures students' preparedness for global workforces. The four subscales in the EGPI directly align to important soft or professional skills needed by both engineers and other globally prepared professionals. By comparing EGPI results among participants in a domestic and international research experience, the researchers sought to gain insight into what global workforce competencies were developed in an international setting in comparison with the experience of conducting research in a domestic lab setting. Results indicate that the students in the NanoJapan program demonstrated greater increases in engineering global preparedness than the RQI students, and that the RQI students, who did not go abroad, actually declined on most measures of global preparedness at the end of the summer. The researchers posit that this may be attributed to the NanoJapan curriculum that encouraged participants to actively reflect on cultural aspects of research and to the nature of the international experience itself. Moreover, the NanoJapan experience may more closely mirror the typical global workforce/team experience students will encounter after graduation once entering the workforce. The researchers discuss implications for the design of international research and internship experiences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call