Abstract

The FilmArray Respiratory Panel (RP) multiplexed nucleic acid amplification test (Idaho Technology, Inc., Salt Lake City, UT) was compared to laboratory-developed real-time PCR assays for the detection of various respiratory viruses and certain bacterial pathogens. A total of 215 frozen archived pediatric respiratory specimens previously characterized as either negative or positive for one or more pathogens by real-time PCR were examined using the FilmArray RP system. Overall agreement between the FilmArray RP and corresponding real-time PCR assays for shared analytes was 98.6% (kappa = 0.92 [95% confidence interval (CI), 0.89 to 0.94]). The combined positive percent agreement was 89.4% (95% CI, 85.4 to 92.6); the negative percent agreement was 99.6% (95% CI, 99.2 to 99.8). The mean real-time PCR threshold cycle (C(T)) value for specimens with discordant results was 36.46 ± 4.54. Detection of coinfections and correct identification of influenza A virus subtypes were comparable to those of real-time PCR when using the FilmArray RP. The greatest comparative difference in sensitivity was observed for adenovirus; only 11 of 24 (45.8%; 95% CI, 27.9 to 64.9) clinical specimens positive for adenovirus by real-time PCR were also positive by the FilmArray RP. In addition, upon testing 20 characterized adenovirus serotypes prepared at high and low viral loads, the FilmArray RP did not detect serotypes 6 and 41 at either level and failed to detect serotypes 2, 20, 35, and 37 when viral loads were low. The FilmArray RP system is rapid and extremely user-friendly, with results available in just over 1 h with almost no labor involved. Its low throughput is a significant drawback for laboratories receiving large numbers of specimens, as only a single sample can be processed at a time with one instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.