Abstract
Bovine chymosin constitutes a traditional ingredient for enzymatic milk coagulation in cheese making, providing a strong clotting capacity and low general proteolytic activity. Recently, these properties were surpassed by camel chymosin, but the mechanistic difference behind their action is not yet clear. We used capillary electrophoresis and reversed-phase liquid chromatography-mass spectrometry to compare the first site of hydrolysis of camel and bovine chymosin on bovine κ-casein (CN) and to determine the kinetic parameters of this reaction (pH 6.5; 32 °C). The enzymes showed identical specificities, cleaving the Phe105-Met106 bond of κ-CN to produce para-κ-CN and caseinomacropeptide. Initial formation rates of both products validated Michaelis-Menten modeling of the kinetic properties of both enzymes. Camel chymosin bound κ-CN with ∼30% lower affinity (K(M)) and exhibited a 60% higher turnover rate (k(cat)), resulting in ∼15% higher catalytic efficiency (k(cat)/K(M)) as compared to bovine chymosin. A local, less dense negatively charged cluster on the surface of camel chymosin may weaken electrostatic binding to the His-Pro cluster of κ-CN to simultaneously impart reduced substrate affinity and accelerated enzyme-substrate dissociation as compared to bovine chymosin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.