Abstract

A systematic comparison was made between the forced convection heat transfer characteristics of the supercritical pressure water and that of the subcritical pressure water in vertically-upward tubes. It was found that, severe heat transfer deterioration did not occur in the vertically-upward internally-ribbed tube at supercritical pressures, and the variations in the inside wall temperature with the bulk fluid enthalpy experienced three stages, namely, the continuously increasing stage, the smoothly changing stage and another continuously increasing stage at the supercritical pressures; however, at subcritical pressures, there existed at least four stages for the variation of the inside tube wall temperature, i.e., the continuously increasing stage, the basically unchanging stage, the sharply rising stage and another continuously increasing stage. The heat transfer coefficients in the subcritical two-phase region, in which the heat transfer deterioration did not occur, were much greater than those in the heat transfer enhancement region of supercritical pressure water. In the large specific heat region of supercritical pressure water, the enhanced heat transfer was impaired by increasing the heat flux; however, in the subcritical two-phase region, the higher the heat flux, the greater the heat transfer coefficient would be. It was also found that the heat transfer deterioration of supercritical pressure water was similar in mechanism to the DNB (departure from nucleate boiling) at subcritical pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call