Abstract

This paper presents a comparison of conventional single-phase water/glycol liquid and innovative two-phase cooling technology for thermal management of high-power electronics automotive insulated-gate bipolar transistor modules during a full drive cycle. The proposed two-phase cooling system is built using conventional automotive air conditioning components (a condenser, an expansion valve, a compressor, and vapor and liquid lines) and a conventional cold plate as used for single-phase cooling; thus, the design does not require the development of new technology for its implementation. Three-dimensional numerical simulation in COMSOL and experimental results of two-phase cooling have been obtained on a prototype and compared to conventional water/glycol cooling high-power electronics modules, with a considerable improvement on working temperature, power transfer capacity, and equalization of die temperatures during a full driving cycle. These results suggest that two-phase cooling using the same cold plates as in single-phase cooling can be used to substantially improve the performance and reliability of electric vehicle power converters without major changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call