Abstract

It was previously hypothesised that the requirements for glycosyl-phosphatidylinositol (GPI) anchoring in mammalian cells and parasitic protozoa are similar but not identical. We have investigated this by converting the GPI cleavage/attachment site in porcine membrane dipeptidase to that found in the trypanosomal variant surface glycoprotein 117 and expressing the resulting mutants in COS-1 cells. Changing the entire (omega), (omega)+1 and (omega)+2 triplet in membrane dipeptidase from Ser-Ala-Ala to Asp-Ser-Ser resulted in efficient GPI anchoring of the mutant proteins, as assessed by cell-surface activity assays and susceptibility to release by phosphatidylinositol-specific phospholipase C. Immunoelectrophoretic blot analysis with antibodies recognising epitopes either side of the native (omega) residue in porcine membrane dipeptidase, and expression of a mutant in which potential alternative cleavage/attachment sites were disrupted, indicated that alternative GPI cleavage/attachment sites had not been used. These results indicate that the requirements for GPI anchoring between mammalian and protozoal cells are not as different as previously suggested, and that rules for predicting the probability of a sequence acting as a GPI cleavage/attachment site need to be applied with caution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call