Abstract

BackgroundMalaria has a negative impact on the activities of companies in endemic countries especially in Cameroon. In this regard, an increasingly growing number of companies have started to include management of malarious patients in their health policies. In the present study, we will evaluate the diagnostic performances of a fluorescence microscopy (FM), Cyscope® microscope, in the detection of malaria parasites.MethodsA cross-sectional study was conducted among employees of two companies of the town of Douala on 21 and 22 March 2017. Sociodemographic information of employees was collected using a questionnaire form. Blood samples of ~ 10 μL were collected by venipuncture for the diagnosis of malaria using FM and light microscopy (LM). Performances of FM with respect to sensitivity (Se), specificity (Sp), positive and negative predictive values (PPV and NPV), positive and negative likelihood rates (PLR and NLR), accuracy, reliability, and Kappa index were calculated using LM as gold standard.ResultsIn total, 442 employees, aged 37.8 ± 9.7 years old on average, were included in the study. Prevalence of malaria using FM and LM was 39.2% and 17%, respectively (p < 0.01). Plasmodium falciparum and P. vivax were the two species involved in malaria infection cases. In terms of developmental stages, 68%, 45.3%, and 1.3% of employees carried gametocytes, trophozoites, and schizonts, respectively. Findings on diagnostic performances of FM were as follows: Se = 84%, Sp = 69.95%, PPV = 63.58%, NPV = 95.5%, accuracy = 89.36%, and reliability = 53.95%. Sensitivity of Cyscope® microscope increased as a function of parasitemia with values ranging from 76.92% at parasitemia between 1 and 500 parasites/μL to 91.11% at parasitemia between 501 and 5000 parasites/μL. The geometric mean parasite density was1850 parasites per μL of blood (range 1600–40,000), and most of employees (60.8%) had moderate parasitemia. The performances of FM were similar between febrile and afebrile patients.ConclusionsThis study showed good performances of Cyscope® microscope and outlines that this diagnostic tool could be used in management of malaria at workplace.

Highlights

  • Malaria has a negative impact on the activities of companies in endemic countries especially in Cameroon

  • This parasite belongs to the genus Plasmodium, of which five species (P. vivax, P. malariae, P. ovale, P. knowlesi, and P. falciparum) are responsible for human malaria

  • According to the World Health Organization (WHO), 95% of malaria cases are caused by P. falciparum; 228 million cases of malaria are recorded with nearly 435,000 deaths linked to this disease worldwide in 2018 [2]

Read more

Summary

Introduction

Malaria has a negative impact on the activities of companies in endemic countries especially in Cameroon. In SSA countries, many control strategies actions, such as the use of long-lasting insecticide-treated mosquito net campaigns [6], indoor residual spraying and sanitation campaigns, have been taken by many countries government and nongovernmental organizations to fight against malaria [7,8,9,10]. These measures were taken mainly in the community [6] as well as a small part in the professional environment. Private companies must play a big role in the fight against malaria through funding and execute programs for the implementation of sustainable strategies

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call