Abstract
Abstract This study investigates the flame dynamics of lean premixed kerosene combustion for two different degrees of fuel-air premixing using a swirl stabilized burner with an axially movable twin fluid fuel injection nozzle. Thermal power, equivalence ratio and atomizing air mass flow are varied systematically for both nozzle positions investigated. Measurements of the droplet size distribution at the nozzle exit are provided for all operation points. NOx emission measurements and OH*-chemiluminescence flame images show that stationary combustion characteristics significantly change with the nozzle position. Flame Transfer Functions (FTFs) are presented and interpreted for all operation points. The FTFs for the two configurations differ most in the low frequency range where the influence of the droplet dynamics is expected to be highest. For both configurations, a change in thermal power does not affect droplet size, flame shape, NOx emissions and FTF. The observed trends in response to changes in equivalence ratio and atomizing air mass flow are opposite for both configurations. NOx emissions and flame shape are independent of the atomization air mass flow in the highly premixed configuration but not in the partially premixed configuration. In contrast to this, the FTF is affected by changes of the atomization air mass flow in both configurations, but again the trends are opposite. The observed trends for the highly premixed configuration are modeled and reproduced by a change in the phase relation between the equivalence ratio fluctuations and other instability driving mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.