Abstract

We systematically study the sensitivity and noise of an InN/InGaN quantum dot (QD) extended gate field-effect transistor (EGFET) with super-Nernstian sensitivity and directly compare the performance with potentiometric sensing. The QD sensor exhibits a sensitivity of −80 mV/decade with excellent linearity over a wide concentration range, assessed for chloride anion detection in 10–4 to 0.1 M KCl aqueous solutions. The sensitivity and linearity are reproduced for the EGFET and direct open-circuit potential (OCP) readout. The EGFET noise in the saturated regime is smaller than the OCP noise, while the EGFET noise in the linear regime is largest. This highlights EGFET operation in the saturated regime for most precise measurements and the lowest limit of detection and the lowest limit of quantification, which is attributed to the low-impedance current measurement at a relatively high bias and the large OCP for the InN/InGaN QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.