Abstract

Phospholipase D (PLD) proteins from Streptomyces species are useful biocatalysts for synthesizing phospholipid derivatives relevant for the pharmaceutical and food industry from low-cost phosphatidylcholine. The overexpression of PLD in a recombinant strain is necessary to achieve large-scale PLD production. In this study, we investigated the feasibility of expressing PLD from Streptomyces halstedii in different hosts. The enzymatic activity of PLD reached 69.12 U/mL in the homologous Streptomyces lividans host, which was around 50-fold higher than that in the original host. Meanwhile, in Escherichia coli and Pichia pastoris, PLD expression was poor and showed obvious toxicity to cells, which may have been one of the reasons for low levels of PLD observed in heterologous hosts. An induced (Ptip)/constitutive (PermE*) dual-promoter expression system in S. lividans was constructed, which could achieve constitutive expression with PLD enzymatic activity of 13.41 U/mL under non-induced conditions and yield the highest PLD enzymatic activity of 68.33 U/mL with 2 μg/mL thiostreptone. The concentration of the expensive inducer was significantly reduced to only 10% of that used in the original expression system without affecting the protein expression level, which provided a good foundation for subsequent industrial applications to reduce production costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.