Abstract

Biotic ligand models (BLMs) and the sensitivities of indigenous species are used to assess the environmental risk considering the bioavailability of metals, such as nickel. However, the BLM-based acute-to-chronic ratio (ACR) is required if the predicted no-effect concentration (PNEC) cannot be derived from the chronic species sensitivity distribution (SSD). The applicability of the ACR approach for estimating BLM-based PNEC for nickel from acute toxicity data was evaluated in the present study. The BLM-based acute SSD for nickel was built using the sensitivities of 21 indigenous species and different taxon-specific BLMs for each taxonomic group. To predict the acute sensitivity of invertebrates, the chronic crustacean nickel BLM with pH effect term, which can account for nickel toxicity at high pH levels, was used. This was used instead of the existing acute BLM for crustacean, which has too narrow a pH range to cover the pH dependency of toxicity. The final BLM-based ACR of nickel, determined within a factor of 1.53 from the species-specific acute and chronic sensitivities of the six species, was more reliable than the typical ACR estimated within a factor of 1.84. A linear relationship (r2 = 0.95) was observed between the PNECs using BLM-based ACR and the PNECs derived from the BLM-based chronic SSD of the European Union Risk Assessment Reports. In conclusion, the BLM-based PNEC for nickel could be derived using the ACR approach, unlike when copper BLM was applied. The BLM-based ACR for nickel is the first result calculated by directly comparing acute and chronic species sensitivities, and will contribute to the application of BLM-based risk assessment in broader ecoregions. Environ Toxicol Chem 2023;00:1-14. © 2023 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.