Abstract

Additive manufacturing technologies are becoming more and more important for the implementation of efficient process chains. Due to the possibility of a near net shape, manufacturing time for finish-machining can significantly be reduced. Especially for conventionally hard to machine materials like gamma titanium aluminides (γ-TiAl), this manufacturing process is very attractive. Nevertheless, for most applications, a rework of these generative components is necessary. Independently of the mechanical material properties, electrochemical machining is one promising technology of machining these materials. Major advantages of electrochemical machining are its process-specific characteristics of high material removal rates in combination with almost no tool wear. But electrochemical machining results are highly dependent on the microstructure of the material regarding the surface roughness. Therefore, this article deals with research on electrochemical machining of electron beam melted γ-TiAl TNB-V5 compared to a casted form of this alloy. The difference between the specific removal rates as a function of current density is investigated using electrolytes based on sodium nitrate and sodium chloride. Moreover, the dissolving behavior of the electron beam melted and casted structure is analyzed by potentiostatic polarization curves. The surface roughness is heavily dependent on a homogeneous dissolution behavior of the microstructure. Thus, the mean roughness as a function of current density is investigated as well as rim zone analyses of the different structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call