Abstract
We are using cyberspace for completing our daily life activities because of the growth of Internet. Attackers use some approachs, such as phishing, with the use of false websites to collect personal information of users. Although, software companies launch products to prevent phishing attacks, identifying a webpage as legitimate or phishing, is a very defficult and these products cannot protect from attacks. In this paper, an anti-phishing system has been introduced that can extract feature from website’s URL as instant basis and use four classification algorithms named as K-Nearest neighbor, decision tree, support vector machine, random forest on these features. According to the comparison of the experimental results from these algorithms, random forest algorithm with the selected features gives the highest performance with the 95.67% accuracy rate. Then we have used one deep learning algorithm as enhanced of our experiment named as deep neural decision forests which have given performance with the 92.67% accuracy rate. Then we have created a system which can extract the features from raw URL and pass the features to our deep neural decision forest trained model and can classify the URL as Phishing or legitimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.