Abstract

The aim of this work was to compare the efficiency of different carrier agents (maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin) on the powder recovery and physicochemical properties of persimmon powders produced by spray drying. Moisture content, water activity, hygroscopicity, solubility index, total phenol retention, color parameters, particle size, morphology, crystalline state, and sorption isotherms of persimmon powders were determined. No powder was recovered when the persimmon pulp was spray dried alone. The amount of maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin needed to obtain a powder recovery of 70% was 45, 30, 30, 25, and 10%, respectively. The use of maltodextrin, gum arabic, and starch sodium octenyl succinate resulted in higher total polyphenol retention and better reconstitution properties, but the powders were paler than those with whey protein concentrate and egg albumin. All carriers could aid the formation of persimmon irregular spherical microcapsules. However, powders produced with maltodextrin and gum arabic had a smoother surface and a more spherical shape than powders produced with other carriers. In addition, powders produced with starch sodium octenyl succinate, whey protein concentrate, and egg albumin were more agglomerated and shriveled compared to those produced with maltodextrin and gum arabic. All experimental data of water adsorption were well fitted to the Guggenheim-Anderson-de Boer (GAB) model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call