Abstract

BackgroundIn the context of morbid obesity, vagus nerve stimulation could be used to control gastric function targeting the small afferent B-fibers and C-fibers. Compared to large A-fibers, activation thresholds of these small efferent fibers are 10 to 100 times greater, inducing technical constraints and possible nerve damages. Although rectangular waveform is commonly used in nerve stimulation, recent modeling and experimental studies suggest that non-rectangular waveforms could reduced the charge injected by the stimulator. New methodThe objective of the present study is to evaluate the charge injection of complex waveforms such as the ramp, quarter sine and chopped pulses in the context of vagus nerve stimulation. We performed in-vivo study on the porcine abdominal vagus nerves and evaluated charge injection at activation thresholds. A modeling study was performed to further extent the results obtained in-vivo. Comparison with existing methodCompared to the rectangular pulse, the ramp and quarter sine waveforms activated gastric fibers with the lowest charge injection: −23.2% and −30.1% respectively. The efficacy of chopped pulses is questioned through the consideration of the strength-duration curve. ConclusionContinuous ramp and quarter sine waveforms effectively activate small diameter fibers. These pulse shapes may be considered for long-term vagus nerve stimulation. The results predicted by computational models were qualitatively consistent with experiments. This suggested the relevance of using modeling in the context of complex waveforms prior to future in-vivo tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.