Abstract

Successful blood substitutes, when infused in place of an equal volume of whole blood, provide similar delivery of oxygen to the tissues without introducing abnormalities in cellular metabolism. Equal volumes of whole blood (control), polyethylene glycol-hemoglobin solution at 6 g per dL, dextran solution, and physiologic saline were compared for their ability to reverse the effects of hemorrhagic hypotension on oxygenation and dopamine metabolism in the brain of newborn piglets. The decrease in mean arterial blood pressure was used as a measure of the hemorrhagic insult. Cerebral oxygen pressure was determined optically by the oxygen-dependent quenching of phosphorescence, and the extracellular level of dopamine in the corpus striatum was determined by in vivo microdialysis. Following a 2-hour stabilization after implantation of the microdialysis probe in the corpus striatum, the mean arterial blood pressure was decreased from 88 +/- 7 torr (control) to 42 +/- 5 torr by the removal of blood in a stepwise manner, over a period of 60 minutes. Decrease in mean arterial blood pressure caused a progressive stepwise decrease in cortical oxygen pressure from 48 +/- 5 torr to 16 +/- 4 torr at the end of bleeding. As a consequence of the decrease in oxygen pressure, extracellular dopamine increased progressively to about 2300 percent of the control value. When a volume of blood equal to that removed was returned and bicarbonate was injected to help correct arterial pH, blood pressure, cortical oxygen pressure, and extracellular dopamine all returned within the 20- to 30-minute recovery period to values not significantly different from control values. An equal volume of polyethylene glycol-hemoglobin solution, even with significantly lower hemoglobin content than whole blood, gave results comparable to those with whole blood. Polyethylene glycol-hemoglobin solution, like whole blood but in contrast to physiologic saline or dextran solution, was capable of returning the mean arterial blood pressure, cortical oxygen pressures, and extracellular dopamine nearly to control levels after acute blood loss in newborn piglets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.