Abstract

BackgroundThe porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving pathogen of swine. At present, there is a high demand for safe and more effective vaccines that can be adapted regularly to emerging virus variants. A recent study showed that, by the use of a controlled inactivation procedure, an experimental BEI-inactivated PRRSV vaccine can be developed that offers partial protection against homologous challenge with the prototype strain LV. At present, it is however not known if this vaccine can be adapted to currently circulating virus variants. In this study, two recent PRRSV field isolates (07 V063 and 08 V194) were used for BEI-inactivated vaccine production. The main objective of this study was to assess the efficacy of these experimental BEI-inactivated vaccines against homologous and heterologous challenge and to compare it with an experimental LV-based BEI-inactivated vaccine and commercial inactivated and attenuated vaccines. In addition, the induction of challenge virus-specific (neutralizing) antibodies by the different vaccines was assessed.ResultsIn a first experiment (challenge with 07 V063), vaccination with the experimental homologous (07 V063) inactivated vaccine shortened the viremic phase upon challenge with approximately 2 weeks compared to the mock-vaccinated control group. Vaccination with the commercial attenuated vaccines reduced the duration of viremia with approximately one week compared to the mock-vaccinated control group. In contrast, the experimental heterologous (LV) inactivated vaccine and the commercial inactivated vaccine did not influence viremia. Interestingly, both the homologous and the heterologous experimental inactivated vaccine induced 07 V063-specific neutralizing antibodies upon vaccination, while the commercial inactivated and attenuated vaccines failed to do so.In the second experiment (challenge with 08 V194), use of the experimental homologous (08 V194) inactivated vaccine shortened viremia upon challenge with approximately 3 weeks compared to the mock-vaccinated control group. Similar results were obtained with the commercial attenuated vaccine. The experimental heterologous (07 V063 and LV) inactivated vaccines did not significantly alter viremia. In this experiment, 08 V194-specific neutralizing antibodies were induced by the experimental homologous and heterologous inactivated vaccines and a faster appearance post challenge was observed with the commercial attenuated vaccine.ConclusionsThe experimental homologous inactivated vaccines significantly shortened viremia upon challenge. Despite the concerns regarding the efficacy of the commercial attenuated vaccines used on the farms where the field isolates were obtained, use of commercial attenuated vaccines clearly shortened the viremic phase upon challenge. In contrast, the experimental heterologous inactivated vaccines and the commercial inactivated vaccine had no or only a limited influence on viremia. The observation that homologous BEI-inactivated vaccines can provide a more or less standardized, predictable degree of protection against a specific virus variant suggests that such vaccines may prove useful in case virus variants emerge that escape the immunity induced by the attenuated vaccines.

Highlights

  • The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving pathogen of swine

  • The observation that homologous binary ethyleneimine (BEI)-inactivated vaccines can provide a more or less standardized, predictable degree of protection against a specific virus variant suggests that such vaccines may prove useful in case virus variants emerge that escape the immunity induced by the attenuated vaccines

  • A high genetic variability has been demonstrated within both genotypes [10,11,12,13] and the genetic differences between virus variants are mirrored in different virulence, pathogenicity, immunogenicity, . . . A recent study by Diaz et al (2012) showed that infection with different PRRSV strains leads to different virological and immunological outcomes and results in different degrees of homologous and heterologous protection [14]

Read more

Summary

Introduction

The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving pathogen of swine. A recent study showed that, by the use of a controlled inactivation procedure, an experimental BEI-inactivated PRRSV vaccine can be developed that offers partial protection against homologous challenge with the prototype strain LV At present, it is not known if this vaccine can be adapted to currently circulating virus variants. Following homologous challenge of the vaccinated pigs with LV, animals developed an earlier and strongly elevated VN antibody response and a significant reduction of viremia was observed [25] It is unknown whether it is possible to achieve similar results for PRRSV isolates that are currently causing reproductive or respiratory disorders in the field. The main objective of this study was to test the capacity of experimental inactivated autogenous PRRSV vaccines to protect naïve pigs against homologous PRRSV challenge and to compare the efficacy of these vaccines with that of experimental heterologous inactivated vaccines, the commercial vaccine used on the farms, and other commercial inactivated and attenuated vaccines

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call