Abstract
To compare the effects of xylazine bolus versus medetomidine constant rate infusion (MCRI) on cardiopulmonary function and depth of anesthesia in dorsally recumbent, spontaneously breathing, isoflurane-anesthetized horses. Prospective, randomized crossover study. 10 healthy adult Standardbreds. Horses were premedicated with xylazine or medetomidine IV. Anesthesia was induced with diazepam and ketamine and maintained with isoflurane for 150 minutes. For the xylazine treatment, end-tidal isoflurane concentration was maintained at 1.7%, and xylazine (0.2 mg/kg [0.09 mg/lb], IV) was administered as a bolus at the end of anesthesia. For the MCRI treatment, end-tidal isoflurane concentration was maintained at 1.4%, and medetomidine (0.005 mg/kg/h [0.0023 mg/lb/h], IV) was infused throughout anesthesia. Physiologic data (ie, heart rate, respiratory rate, rectal temperature, bispectral index, and electromyographic values) were compared between treatments with xylazine bolus versus MCRI. Heart rate was lower, but mean arterial blood pressure was higher from 20 to 40 minutes with MCRI treatment, compared with conventional treatment with xylazine. Respiratory rate and rectal temperature were greater with MCRI treatment. Bispectral index was lower with MCRI treatment from 80 to 150 minutes, and electromyographic values were lower with MCRI treatment from 30 to 150 minutes. In isoflurane-anesthetized horses, premedication with medetomidine followed by administration of medetomidine as a constant rate infusion resulted in decreased heart rate, higher arterial blood pressure from 20 through 40 minutes after induction of anesthesia, and better preserved body temperature, compared with conventional treatment with xylazine. Greater depth of anesthesia and muscle relaxation were seen with MCRI treatment, despite the lower isoflurane concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Veterinary Medical Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.