Abstract

This study compared the abilities of the chemical-shift selective saturation(CHESS) and the spectrally-adiabatic inversion recovery (SPAIR) fat-saturation techniques to resolve the recent problems in fat saturation caused by areas of changing volume such as the head and the neck and by metal artifacts when T1 fat-saturation techniques representing the anatomical images and T2 fat-saturation techniques representing pathological images are used. To compare the abilities of CHESS and SPAIR, we acquired images of the head and the neck and of the pelvis, and we compared the contrast-to-noise ratios (CNRs) and the signal-to-noise ratios (SNRs) of the signals from the flexed body parts. Images were taken of the abdomens, heads and necks, and pelvises of 15 men and 15 women (30 in total). In all scanning techniques, the SNRs and the CNRs were calculated based on a quantitative analysis method with a view to obtaining uniform data. According to the study results, the CNRs of the SPAIR and the CHESS techniques for the pelvis in the T1-weighted image were 55.10 and 67.23, respectively. The SNRs of the SPAIR technique were70.61 for muscle and 15.50 for fat whereas the SNRs of the CHESS technique were 79.23 for muscle and 12.00 for fat. For the pelvis in the T2-weighted image, the CNRs of the SPAIR and the CHESS technique were 12.50 and 16.66, respectively. The SNRs of the SPAIR technique were 16.98 for muscle and 5.14 for fat. In contrast, the SNRs of the CHESS technique were 27.90 for muscle and 11.23 for fat. Consequently, the signal intensity was higher in the CHESS than in the SPAIR technique. Nevertheless, with regard to the clinical usefulness, the image quality was higher in the SPAIR technique than in the CHESS technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call