Abstract

Various mechanisms, including increases in lipid peroxidation, have been proposed to account for metal-induced cellular injury. By comparing several metals in the same cell population, it is possible to determine whether a correlation exists between ability to produce cell injury and ability to alter parameters pertaining to a particular mechanism. Of particular interest in this study was the relation between metal-induced cytotoxicity and increases in lipid peroxidation. The effects of Cr, Mn, Zn, Ni, Pb, Se, V, Fe, Cd, Hg, Cu, at final concentrations of 1-1000 microM, on the viability of isolated hepatocytes were therefore examined by assessing the loss of intracellular K+ and aspartate aminotransferase (AST). Simultaneously, the ability of the metals to induce lipid peroxidation, as measured by an increase in thiobarbituric acid (TBA) reactants, was assessed. Hg and Cu required the lowest concentration to produce cellular injury, while Cd produced less dramatic changes in cell viability and Fe at 1000 microM produced only a small decrease in intracellular K+. The largest absolute increases in lipid peroxidation were found in the presence of V, followed by Fe and Hg, with Cd and Se causing the smallest increase in TBA reactants. These observations suggest that the lipid peroxidation associated with Cd and Hg is not necessarily responsible for the loss of cell viability induced by these two metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.