Abstract

NS5806 activates the transient outward potassium current (I(to) ) in canine ventricular cells. We compared the effects of NS5806 on canine atrial versus ventricular tissues and myocytes. NS5806 (10 μM) was evaluated in arterially perfused canine right atrial and right ventricular wedge preparations. In ventricular wedges NS5806 (10 μM) accentuated phase 1 in epicardium (Epi), with little effect in endocardium (Endo), resulting in augmented J-waves on the ECG. In contrast, application of NS5806 (10 μM) to atrial preparations had no effect on phase 1 repolarization but significantly decreased upstroke velocity (dV/dt) and depressed excitability, consistent with sodium channel block. Current and voltage-clamp recordings were made in the absence and presence of NS5806 in (10 μM) enzymatically dissociated atrial and ventricular myocytes. In ventricular myocytes, NS5806 increased I(to) magnitude by 80% and 16% in Epi and Endo, respectively (at +40 mV). In atrial myocytes, NS5806 increased peak I(to) by 25% and had no effect on the sustained current, I(Kur) . Under control conditions, I(Na) density in atrial myocytes was nearly double that in ventricular myocytes. NS5806 caused a shift in steady-state mid-inactivation (V(1/2)) from -73.9 ± 0.27 to -77.3 ± 0.21 mV in ventricular and from -82.6 ± 0.12 to -85.1 ± 0.11 mV in atrial cells, resulting in reduction of I(Na) in both cell types. Expression of mRNA encoding putative I(Na) and I(to) channel subunits was evaluated by qPCR. NS5806 produces a prominent augmentation of I(to) with little effect on I(Na) in the ventricles, but a potent inhibition of I(Na) with little augmentation of I(to) in atria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.