Abstract
Objective: The aim of this study was to evaluate the effect of both the same polishing method and those with and without thermal aging on the surface roughness of conventional, CAD/CAM milling and 3D printing denture base materials.
 Materials and Methods: A total of 30 round shaped specimens were obtained by 3 different methods (n=10): Conventional, CAD/CAM milling and 3D-Printing. After applying the same polishing technique to all groups, surface roughness values were measured. Profilometer device was used for surface roughness measurement. Then, after the thermal aging of all samples, surface roughness values were measured and the roughness values between no-thermocycling and thermocycling were compared. Tukey, Mann Whitney U and Kruskal Wallis tests were used statistically. P values of ≤ 0.05 were considered significant. 
 Results: As a result of the same polishing process, there was a difference in surface roughness in all groups. While the highest surface roughness values were seen in 3D-printing, the lowest roughness value was seen in the CAD/CAM milling and was statistically significant (p<0.05). Thermocycling did not show a statistically significant difference in surface roughness (p>0.05).
 Conclusions: The same polishing process caused different surface roughness values in the denture base materials obtained with different methods, and the lowest surface roughness value was seen in the CAD/CAM milling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.