Abstract

Nitrobenzene is degraded by Pseudomonas pseudoalcaligenes JS45 via 2-aminophenol to 2-aminomuconic semialdehyde, which is further degraded to pyruvate and acetaldehyde. Comamonas sp. JS765 degrades nitrobenzene via catechol to 2-hydroxymuconic semialdehyde. In this study we examined and compared the late steps of degradation of nitrobenzene by these two microorganisms in order to reveal the biochemical relationships of the two pathways and to provide insight for further investigation of their evolutionary history. Experiments showed that 2-hydroxymuconate, the product of the dehydrogenation of 2-hydroxymuconic semialdehyde, was degraded to pyruvate and acetaldehyde by crude extracts of Comamonas sp. JS765, which indicated the operation of a classical catechol meta-cleavage pathway. The semialdehyde dehydrogenases from Comamonas sp. JS765 and P. pseudoalcaligenes JS45 were able to metabolize both 2-amino- and 2-hydroxymuconic semialdehyde, with strong preference for the physiological substrate. 2-Aminomuconate was not a substrate for 4-oxalocrotonate decarboxylase from either bacterial strain. The close biochemical relationships among the classical catechol meta-cleavage pathway in Comamonas sp. JS765, 2-aminophenol meta-cleavage pathways in P. pseudoalcaligenes JS45, and an alternative 2-aminophenol meta-cleavage pathway in Pseudomonas sp. AP-3 suggest a common evolutionary origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.