Abstract

BackgroundThe dipeptidyl peptidase-4 (DPP4) enzyme is a novel adipokine potentially involved in the development of the metabolic syndrome (MetS). Previous observations demonstrated higher visceral adipose tissue (VAT) DPP4 gene expression in non-diabetic severely obese men with (MetS+) vs. without (MetS−) MetS. DPP4 mRNA abundance in VAT correlated also with CpG site methylation levels (%Meth) localized within and near its exon 2 (CpG94 to CpG102) in non-diabetic severely obese women, regardless of their MetS status. The actual study tested whether DPP4 %Meth levels in VAT are different between MetS− and MetS+ non-diabetic severely obese subjects, whether variable metabolic and plasma lipid profiles are observed between DPP4 %Meth quartiles, and whether correlation exists in DPP4 %Meth levels between VAT and white blood cells (WBCs).MethodsDNA was extracted from the VAT of 26 men (MetS−: n=12, MetS+: n=14) and 79 women (MetS−: n=60; MetS+: n=19), as well as from WBCs in a sub-sample of 17 women (MetS−: n=9; MetS+: n=8). The %Meth levels of CpG94 to CpG102 were assessed by pyrosequencing of sodium bisulfite-treated DNA. ANOVA analyses were used to compare the %Meth of CpGs between MetS− and MetS+ groups, and to compare the metabolic phenotype and plasma lipid levels between methylation quartiles. Pearson correlation coefficient analyses were computed to test the relationship between VAT and WBCs CpG94-102 %Meth levels.ResultsNo difference was observed in CpG94-102 %Meth levels between MetS− and MetS+ subjects in VAT (P=0.67), but individuals categorized into CpG94-102 %Meth quartiles had variable plasma total-cholesterol concentrations (P=0.04). The %Meth levels of four CpGs in VAT were significantly correlated with those observed in WBCs (r=0.55−0.59, P≤0.03).ConclusionsThis study demonstrated that %Meth of CpGs localized within and near the exon 2 of the DPP4 gene in VAT are not associated with MetS status. The actual study also revealed an association between the %Meth of this locus with plasma total-cholesterol in severe obesity, which suggests a link between the DPP4 gene and plasma lipid levels.

Highlights

  • The dipeptidyl peptidase-4 (DPP4) enzyme is a novel adipokine potentially involved in the development of the metabolic syndrome (MetS)

  • Characteristics of the study subjects in MetS− and MetS+ groups The characteristics of the subjects are presented in Table 1 for each type of experiment (VAT and white blood cells (WBCs))

  • This study revealed that the mean%percentage of methylation (Meth) levels of CpG sites (CpGs) located within and near the second exon of the DPP4 gene (CpG94 to CpG102) were comparable in visceral adipose tissue (VAT) of non-diabetic severely obese MetS− and MetS+

Read more

Summary

Introduction

The dipeptidyl peptidase-4 (DPP4) enzyme is a novel adipokine potentially involved in the development of the metabolic syndrome (MetS). Previous observations demonstrated higher visceral adipose tissue (VAT) DPP4 gene expression in non-diabetic severely obese men with (MetS+) vs without (MetS−) MetS. Deposition of fat preferentially in the abdominal compartment is associated with metabolic and inflammatory alterations often referred to as the metabolic syndrome (MetS) which considerably increases the risk of type 2 diabetes and cardiovascular disease (CVD) [1] Both unhealthy lifestyle and genetic predisposition may influence lipid storage and adipose tissue metabolism, as well as their underlying metabolic abnormalities [2]. In a search aimed at discovering novel candidate genes for MetS, a gene expression profiling of visceral adipose tissue (VAT) of non-diabetic severely obese men revealed ~1.85 fold higher expression of the dipeptidyl peptidase-4 (DPP4) gene in men MetS+ compared to MetS− [3,4]. It is meaningful to consider the DPP4 gene as a good candidate for MetS development

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call