Abstract

The degradation of pharmaceuticals by electrochemical oxidation (EO) in simulated wastewater containing multiple pharmaceuticals was compared between batch and continuous reactors. Despite the excellent efficiencies achieved in batch experiments, the practical/large-scale applications of EO-degrading amine-containing pharmaceuticals has not yet been accomplished. This paper presents the results of continuous experiments with one of the most promising electrochemical configurations of Pt/Ti electrodes before proceeding to application. In the continuous electrooxidation system (without chloride), direct oxidation on the electrode surface and oxidation by hydroxyl radicals were the main pathways. Due to their short lifespans, the radicals could not be transferred to the bulk solution, and the removal of pharmaceuticals followed the order of sulfamethoxazole (SMX) > paracetamol (PAR) > diclofenac (DIC). In the electrochlorination system (with chloride), oxidation by residual chlorine was the main pathway. The removal of pharmaceuticals followed the order of sulfamethoxazole (SMX) > diclofenac (DIC) > paracetamol (PAR). High SMX removal was realized because of the high reaction rate of SMX with free chlorine. Among the pharmaceuticals, PAR had the lowest removal because it is a neutral species with a low mass transfer rate without the attraction of electrostatic force. These results are consistent with the predictions from our previous batch-scale study, which showed that the reaction rate of dissociated compounds could be increased by the addition of electrostatic force. Furthermore, multiple coexisting pharmaceuticals, such as SMX and PAR or DIC, may form dimers that can be transferred to complex structures and cause higher toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.