Abstract

Whether splinting or not splinting adjacent implants together can optimize the stress/strain transfer to the supporting structures remains controversial. The purpose of this study was to compare the photoelasticity and digital image correlation (DIC) in analyzing the stresses/strains transferred by an implant-supported prosthesis. A polymethylmethacrylate model was made with a combination of acrylic resin replicas of a mandibular first premolar and second molar and threaded implants replacing the second premolar and first molar. Splinted (G1/G3) and nonsplinted (G2/G4) metal-ceramic screw-retained crowns were loaded with (G1/G2) and without (G3/G4) the presence of the second molar. Vertical static loads were applied to the first molar implant-supported crown (50 N-photoelasticity; 250 N-DIC). The resulting isochromatic fringes in the photoelastic models were photographed, and a single-camera 2-dimensional DIC system recorded the deformation at the surface of the resin models. Residual stresses were present in the photoelastic model after screw fixation of the crowns. The following average photoelastic stress results (MPa) were found around the loaded implant: G1 (20.06), G2 (23.49), G3 (30.86), G4 (37.64). Horizontal strains (εxx, %) between the molars averaged over the length of the loaded implant were found by DIC: G1 (0.08 ± 0.09), G2 (0.13 ± 0.10), G3 (0.13 ± 0.11), G4 (0.16 ± 0.11). Splinted crowns transferred lower stresses to the supporting bone when the second molar was absent. The second molar optimized the stress distribution between the supporting structures even for nonsplinted restorations. Both methods presented similar results and seemed capable of indicating where issues associated with stress/strain concentrations might arise. However, DIC, while apparently less sensitive than photoelasticity, is not restricted to the use of light-polarizing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.