Abstract
AbstractWe studied three solar energetic particle (SEP) events observed on 14 August 2010, 3 November 2011, and 5 March 2013 by Solar Terrestrial Relations Observatory (STEREO) A, B, and near‐Earth (L1) spacecraft with a longitudinal distribution of particles >90°. Using a forward modeling method combined with extreme ultraviolet and white‐light images, we determined the angular extent of the shock, the time and location (cobpoint) of the shock intersection with the magnetic field line connecting to each spacecraft, and compute the shock speed at the cobpoint of each spacecraft. We then examine whether the observations of SEPs at each spacecraft were accelerated and injected by the spatially extended shocks or whether another mechanism such as cross‐field transport is required for an alternative explanation. Our analyses results indicate that the SEPs observed at the three spacecraft on 3 November, STEREO B (STB) and L1 on 14 August, and the 5 March SEP event at STEREO A (STA) can be explained by the direct shock acceleration. This is consistent with the observed significant anisotropies, short time delays between particle release times and magnetic connection times, and sharp rises in the SEP time profiles. Cross‐field diffusion is the likely cause for the 14 August SEP event observed by STA and the 5 March SEPs observed by STB and L1 spacecraft, as particle observations featured weak electron aniotropies and slow rising intensity profiles. Otherwise, the wide longitudinal spread of these SEP increases would require an existence of a circumsolar shock, which may not be a correct assumption in the corona and heliosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.