Abstract

A stainless steel fiber was made porous and adhesive by platinization and then coated by nanostructured polypyrrole (PPy), using an appropriate electrophoretic deposition (EPD) method. The morphological surface structure and functional groups of the PPy-coated fiber were studied using SEM (Scanning electron microscope) instrument. The prepared fiber was used for comparison of direct immersion (DI) and electroenhanced direct immersion solid-phase microextraction (EE-DI-SPME) of nicotine in human plasma and urine samples followed by gas chromatography flame ionization detector (GC-FID) determination. The effects of the influential experimental parameters on the efficiency of the DI-SPME and EE-DI-SPME methods, including the pH and ionic strength of the sample solution, applied Direct current (DC) voltage, extraction temperature and time and stirring rate, were optimized. Under the optimal conditions, the calibration curves for the DI-SPME-GC-FID and EE-DI-SPME-GC-FID methods were linear over the ranges of 0.1–10.0 μg mL−1 and 0.001–10.0 μg mL−1, respectively. The relative standard deviations (RSDs, n = 6) were found to be 6.1% and 4.6% for the DI and EE strategies, respectively. The LODs (limit of detection) of the DI-SPME-GC-FID and EE-DI-SPME-GC-FID methods were found to be 10 and 0.3 ng mL−1, respectively. The relative recovery values (for the analysis of 1 µg mL−1 nicotine) were found to be 91–110% for EE-DI-SPME and 75–105% for DI-SPME. The enrichment factors for DI-SPME and EE-DI-SPME sampling were obtained as 38,734 and 50,597, respectively. The results indicated that EE-SPME was more efficient for quantitation of nicotine in biological fluids. The developed procedure was successfully carried out for the extraction and measurement of nicotine in real plasma and urine samples.

Highlights

  • IntroductionThe development of green and sustainable analysis procedures is currently an interesting multidisciplinary topic in a broad spectrum of sciences, including chemical analysis, environmental monitoring, biochemistry and medicinal chemistry [2]

  • During the last two decades, chemical analysis strategies were directed toward green chemistry norms, and solvent-free sampling methods have been placed at the center of attention [1].As a result, the development of green and sustainable analysis procedures is currently an interesting multidisciplinary topic in a broad spectrum of sciences, including chemical analysis, environmental monitoring, biochemistry and medicinal chemistry [2]

  • The results indicated that EE-solid-phase microextraction (SPME) was more efficient for quantitation of nicotine in biological fluids

Read more

Summary

Introduction

The development of green and sustainable analysis procedures is currently an interesting multidisciplinary topic in a broad spectrum of sciences, including chemical analysis, environmental monitoring, biochemistry and medicinal chemistry [2]. Following these principals, one of the most important steps in analytical scale separation has been taken by introducing solid-phase microextraction (SPME), as a fast, solvent-free, easy-to-operate and efficient sampling strategy. In SPME, the separation and preconcentration processes have been merged into one step [3].

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call