Abstract

The molten globule state has been assumed to be a major intermediate of protein folding. We compared the stability of the native and acidic molten globule states of horse ferricytochrome c against heat, urea and guanidine hydrochloride (Gdn-HCl) using the intact species and species modified by various degrees of acetylation of the lysyl ε-amino groups. After acetylation, the amino groups cannot protonate at acidic pH. Thermal and urea-induced unfolding transitions measured by far-UV circular dichroism and differential scanning calorimetry showed that, whereas acetylation stabilizes the molten globule state at pH 2, it destabilizes the native state at pH 7, suggesting a difference in their mechanisms of conformational stability. On the other hand, the effects of Gdn-HCl were remarkable. Contrary to what was expected from the thermal and urea-induced unfolding transitions, the Gdn-HCl-induced unfolding transition of the native state at pH 7 was insensitive to the extent of acetylation. At pH 2, Gdn-HCl at low concentrations stabilized the molten globule state and, at high concentrations, destabilized it. Consideration of the difference in the effects of Gdn-HCl from those of urea or heat indicated that, whereas the net positive charge repulsion destabilizes the molten globule state at pH 2, the local negative charge repulsion produced by acetylation of amino groups, and not the net charge, critically destabilizes the native state at pH 7. These results predict that, because of its ionic nature, Gdn-HCl will produce substantially different effects on the conformational states of some proteins compared with those of urea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.