Abstract

As a marine engine fuel of great concern, ammonia needs to be mixed with another high reactive fuel to improve its combustion performance. In this work, the combustion performance of NH3/NH4NO2 and NH3/H2 was compared under different boundary conditions (excess air coefficient, initial temperature, pressure and mixing ratio). The numerical simulation of compression combustion is carried out under different power loads. The addition of ammonium nitrite decreases the ignition requirement of ammonia and shortens the ignition delay time of the mixture fuel. The boundary conditions of compression ignition can be reduced by mixing hydrogen and mixing ammonium nitrite, but it is not enough to achieve compression ignition under NH3/H2 mode. The addition of 30% ammonium nitrite can reduce the intake temperature to 300–360 K, which makes the compression ignition of the mixed fuel feasible. Meanwhile, in order to reduce the high in-cylinder combustion pressure and improve the combustion performance of the mixed fuel, the fuel injection strategy was proposed to achieve constant combustion pressure of 30 MPa under the premise of less power loss, which is a potential solution for the combustion of ammonia fuel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.