Abstract
DNA vaccines have emerged as an attractive approach for antigen-specific cancer immunotherapy. We have previously linked Mycobacterium tuberculosis heat shock protein 70 (HSP70) to human papillomavirus type 16 (HPV-16) E7 in the context of a DNA vaccine. Vaccination with DNA encoding E7/HSP70 has generated a dramatic increase of E7-specific CD8+ T cell precursors and a strong antitumor effect against E7-expressing tumor (TC-1) in vaccinated mice. The success of our strategy has led to two phases I/II clinical trial proposals in patients with HPV-16 associated high-grade squamous intraepithelial lesion (HSIL) of the cervix and in patients with advanced HPV-associated head and neck squamous cell carcinoma (HNSCC). To translate our HPV DNA vaccines into the clinical domain, the efficacy of pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine and of various routes of administrations were assessed in mice. Our results indicated that pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine administered via gene gun generated the highest number of E7-specific CD8+ T cells. In addition, DNA vaccination via gene gun required the least dose to generate similar or slightly better antitumor effects compared to needle intramuscular (i.m.) and biojector administrations. Thus, our data suggest that DNA vaccination via gene gun represents the most potent regimen for DNA administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.