Abstract

Chlorogenic acid (CA) is a well-known ester of caffeic acid present in some food. It is also an active component in traditional Chinese medicines which are used to treat various diseases, but the molecular basis of CA is not clear. In the present work, the proton selective relaxation rate and the affinity index were used to investigate the interaction of CA with human serum albumin and bovine serum albumin under the same buffer conditions. The results indicated that the binding affinity of chlorogenic acid to BSA was stronger than that to HSA. The binding site of the ligand–protein complex was elucidated by molecular docking, and the specific interaction was observed from those hydrogen bonds formed by the ligand and active residues. Using a combination of TR-NOE detection, the optimal ligand conformation was illustrated. Further conformational analysis of the complex revealed that the ability of hydrogen bond formation by polar side chain residues in the binding site of BSA might contribute to the greater binding affinity. The results provide a better understanding of CA binding and should contribute towards the design of modifications of CA for therapeutic purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call