Abstract

AbstractWe evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call