Abstract

The composition of mammalian intestinal microflora is related to many environmental and geographical factors, and it plays an important role in many aspects such as growth and development. Sequencing data of the bacterial 16S rRNA gene from sable (Martes zibellina) samples using next-generation sequencing technology are limited. In our research, 84,116 reads obtained by high-throughput sequencing were analyzed to characterize and compare the intestinal microflora of wild sables and housed sables. Firmicutes (31.1 %), Bacteroidetes (26.0 %) and Proteobacteria (21.5 %) were the three most abundant phyla present in wild sables, whereas Firmicutes (55.6 %), Proteobacteria (29.1 %) and Actinobacteria (6.0 %) were the three predominant phyla present in housed sables. At the phylum level, wild sables exhibited a significant difference in the relative abundances of Bacteroidetes and Actinobacteria, whereas housed sables only exhibited significant changes in TM7 at the phylum level, and Clostridia, at the class level. The predominance of Bacteroidetes in wild sables warrants further research. These results indicate that a sudden change in diet may be a key factor that influences fecal bacterial diversity in mammals.

Highlights

  • The mammalian gastrointestinal tract contains a complex microbial community that encompasses trillions of bacteria

  • Recent studies have shown that the intestinal microbiota plays an important role in modulating the steady-state balance of the intestine and that alterations in this complex microbial community have been associated with the host age, diet, and health (Tilg and Kaser 2011)

  • Our results demonstrate that the predominant bacterial phylum in fecal samples from both wild and housed sables was Firmicutes, which is consistent with the findings of fecal studies in other mammals such as horses (White et al 2009) and snow leopards (Zhang et al 2015)

Read more

Summary

Introduction

The mammalian gastrointestinal tract contains a complex microbial community that encompasses trillions of bacteria. Recent studies have shown that the intestinal microbiota plays an important role in modulating the steady-state balance of the intestine and that alterations in this complex microbial community have been associated with the host age, diet, and health (Tilg and Kaser 2011). The rampant international underground trade of sable pelts and the reduction of their habitats have caused this valuable species to be written in the IUCN Red List of Threatened Species in 2008. Facing these worrisome states, the preservation of sables and their habitats becomes extremely grim and urgent.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call