Abstract
Brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism in obese diabetic db/db mice. The antidiabetic effect of BDNF is dependent on plasma insulin levels, and BDNF enhances insulin action by modulating insulin signalling in peripheral tissues. The aim of the study was to compare the antidiabetic effects of BDNF with those of thiazolidinediones (TZDs), which are insulin-sensitizing agents, through evaluation of the effects of BDNF and TZDs on glucose metabolism, energy expenditure, pancreatic function and hepatic steatosis in db/db mice. The effects of BDNF, pioglitazone and rosiglitazone on blood glucose concentration, body weight and pancreatic insulin and glucagon contents and the effects of BDNF and troglitazone treatment for 3 weeks on blood glucose concentration, body and liver weights and histological liver images were examined in db/db mice. Furthermore, since BDNF reduces food intake in obese hyperphagic diabetic mice, the effects of BDNF treatment for 3 weeks on blood glucose concentration, body weight, fat pad and liver weights and rectal temparature in db/db mice were compared with those of troglitazone under pair-fed conditions. BDNF, pioglitazone and rosiglitazone all ameliorated hyperglycaemia in db/db mice, but BDNF increased the pancreatic insulin content more effectively than pioglitazone and rosiglitazone. The pancreatic glucagon content decreased with BDNF, but increased with pioglitazone and rosiglitazone compared with vehicle, and body weight and liver weight increased with troglitazone, but decreased with BDNF compared with vehicle. Histological analysis of the liver showed that BDNF treatment reduced the massive vacuolization observed with vehicle, whereas troglitazone worsened the vacuolization. Body weight, fat pad and liver weights in BDNF-treated mice were significantly lower than those in pair-fed troglitazone-treated db/db mice, and rectal temperature in BDNF-treated mice was significantly higher than that in pair-fed troglitazone-treated mice, suggesting that BDNF enhances energy expenditure. These data suggest that compared with TZDs, BDNF potently ameliorates pancreatic dysfunction, fatty liver and energy expenditure, thereby exerting favourable antidiabetic effects in type 2 diabetic mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.