Abstract

Few studies have focused on the influence of environmental conditions on the bioavailability of pollutants interacted with nanomaterials in organisms. In this study, we primarily compared the influence of multiwalled carbon nanotubes (MWCNTs) on the bioavailability of fluoxetine in zebrafish (Danio rerio) larva under different environmental conditions: natural organic matter (NOM) and salinity. The results showed that fluoxetine accumulated in the larvae and then transformed into the metabolite norfluoxetine, with the metabolic rates from 2.8 to 3.5. Following co-exposure to MWCNTs, the accumulation of fluoxetine and norfluoxetine were further enhanced, suggesting a superior carrier of MWCNTs for fluoxetine, especially the functional MWCNTs. The consistent increase in the fluoxetine and norfluoxetine accumulation highlights the bioavailability of absorbed fluoxetine on MWCNTs in zebrafish larvae. The presence of NOM promoted the accumulation of fluoxetine and norfluoxetine in zebrafish, but alleviated the carrier effects of MWCNTs, acting as a natural antidote. Salinity negatively influenced the bioavailability of fluoxetine in the larvae, and further reversed the enhancements caused by MWCNTs. These findings provide a new insight into the influence of environmental conditions on the interactions between nanomaterials and pollutants in organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call