Abstract

A comparison of the temperature distributions in a proton exchange membrane (PEM) fuel cell between the parallel-flow gas distributors and the interdigitated gas distributor has been discussed in detail. An electrochemical–thermal coupled numerical model in a five-layer membrane-electrode assembly (MEA) is developed. The temperatures for the reactant fuels as well as the carbon fibers in the porous electrode are predicted by using a CFD technique. The overpotential across the MEA is varied to examine its effect on the temperature distributions of the PEM fuel cell. It is found that both the fuel temperature and the carbon fiber temperature are increased with increasing the total overpotential. In addition, the fuel and carbon-fiber temperature distributions are significantly affected by the flow pattern that cast on the gas distributor. Replacing the parallel-flow gas distributor by the interdigitated gas distributor will increase the local maximum temperature inside the PEM fuel cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.