Abstract

T1ρ, inversion recovery sequence with a gadolinium contrast agent (dGEMRIC), and T2 mapping have shown sensitivity toward different osteoarthritic-associated compositional changes after joint injury, but have not been studied concomitantly invivo. We hypothesized that these magnetic resonance imaging sequences can be used to measure early glycosaminoglycan (GAG) losses and collagen disruption in cartilage of anterior cruciate ligament (ACL) rupture patients. Thirteen acute ACL rupture patients were each imaged during a 4-hour presurgery workup to acquire a fast-spin-echo-based T1ρ sequence, a multi-echo spin-echo T2 sequence, and T1-weighted dGEMRIC an average of 55.7 days after injury. After acquisition, the three sequences' relaxation times were analytically compared. Site-specific differences were evinced, but nonsignificant differences in mean relaxation time between layers of the same region and sequence were observed (analysis of variance, P < .05). Spearman's correlation coefficients of 0.542 (T1ρ vs. T2, P < .05), -0.026 (T1ρ vs. dGEMRIC, P = .585) and -0.095 (T2 vs. dGEMRIC, P < .05) were found. No appreciable focal GAG loss was detected by dGEMRIC, and T2 was generally elevated in the early acute phase of blunt trauma injury. In contrast, both general and focal elevations in T1ρ relaxation times were identified, indicating an acute increase in unbound water in the matrix after blunt trauma, and show that patient-specific cartilage changes occur within otherwise healthy, young patients. Further investigation into each sequence's long-term significance is warranted to help clinicians decide which sequence(s) will be the most useful for osteoarthritis prognosis given the challenge of concomitantly acquiring all three in a busy clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.