Abstract

It has been shown in a number of pathosystems that arbuscular mycorrhizal (AM) fungi confer resistance against root pathogens, including in interactions between Medicago truncatula and the root rot-causing oomycete Aphanomyces euteiches. For the current study of these interactions, a split root system was established for plant marker gene analysis in order to study systemic defense responses and to compare them with local interactions in conventional pot cultures. It turned out, however, that split root systems and pot cultures were in different physiological stages. Genes for pathogenesis-related proteins and for enzymes involved in flavonoid biosynthesis were generally more highly expressed in split root systems, accompanied by changes in RNA accumulation for genes encoding enzymes involved in phytohormone biosynthesis. Against expectations, the pathogen showed increased activity in these split root systems when the AM fungus Funneliformis mosseae was present separately in the distal part of the roots. Gene expression analysis revealed that this is associated in the pathogen-infected compartment with a systemic down-regulation of a gene coding for isochorismate synthase (ICS), a key enzyme of salicylic acid biosynthesis. At the same time, transcripts of genes encoding pathogenesis-related proteins and for enzymes involved in the biosynthesis of flavonoids accumulated to lower levels. In conventional pot cultures showing decreased A. euteiches activity in the presence of the AM fungus, the ICS gene was down regulated only if both the AM fungus and the pathogen were present in the root system. Such negative priming of salicylic acid biosynthesis could result in increased activities of jasmonate-regulated defense responses and could explain mycorrhiza-induced resistance. Altogether, this study shows that the split root system does not reflect a systemic interaction between F. mosseae and A. euteiches in M. truncatula and indicates the importance of testing such systems prior to the analysis of mycorrhiza-induced resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call